PROTECTING SYSTEM
SIRMWARE STORAGE

Modern computing platforms are made of multiple hardware components,
each with its own registers containing critical bits that carry nuanced
meaning. Everything needs to be set just right in order to fully configure
protection. As a result, there is little question why there are so many
reports of vulnerabilities tied to missing protections across many systems
from many vendors. Some examples include CVE-2014-8273 (Speed
Racer), Skylake based MSI, Gigabyte BRIX BIOS Write Protection is not
enabled (CLVA-2017-01-002), Coreboot, UEFI BIOS firmware analysis at
scale, CVE-2018-4251, and slack Razer Laptop firmware controls.

How do these protections really work, though? Below, we will cover

one mechanism for protecting firmware storage (e.g., SP! flash) from
modification by malware in a bit more detail. While there are many more
mechanisms to understand, vulnerabilities tied to this mechanism have
taken on new importance with the discovery of Lojax malware that
exploits this issue in the wild.

BOOT FIRMWARE

When your system starts, many things happen prior to the execution of
the first instruction. When the processor starts execution, it does so at

a specified location known as the reset vector. In order to boot properly,
firmware needs to exist at the reset vector and properly configure the
system such that the boot process can continue. (UEFI is a standard that
defines one approach to this process.) For this discussion, we will look at
how an attacker could modify the code executed in this boot process to
undermine software-based security mechanisms.

The firmware mapped into the reset vector usually comes from an SPI
flash chip on the motherboard. This is accessed through the SPI controller
that is part of the chipset. Preventing access from software (including
malware that gains control for whatever reason) is largely a matter of SPI
controller configuration. Some configuration information can be stored

on the SPI flash itself, inside the descriptor region. This defines access

capabilities for each device that has access to the SPI flash through the
controller. Additional configuration is accomplished by accessing registers
documented in the chipset datasheet.

Many configuration registers support the concept of locking, which
prevents reconfiguration after the lock is set. The configuration can only be
changed again after a reboot. Similarly, the BIOS Control Register includes
such a bit, known as BIOS Lock Enable (BLE). However, the actual behavior
of this bit is not just to prevent further changes to the register until reboot.
The datasheet for a recent chipset describes BLE in this way:

Lock Enable (LE): When set, setting the WP bit will cause SMI.
When cleared, setting the WP bit will not cause SMI. Once set, this
bit can only be cleared by a PLTRST#.

When this bit is set, EISS - bit [5] of this register is locked down.

(Source: Intel® 100 Series and Intel® C230 Series Chipset Family Platform
Controller Hub (PCH) Datasheet, Vol 2)

FIRMWARE STORAGE VULNERABILITIES

The function of BLE is to generate a special interrupt, called a System
Management Interrupt (SMI), whenever writes to SPI are enabled. Code
executing in System Management Mode (SMM) has the opportunity to
decide what changes are allowed to system firmware, making it even more
privileged than the OS kernel. The first security issue, then, is whether

BLE is set at all, which comes up, for example, in this Skylake-based MSI
system. In this case, the BIOS Write Enable (BIOSWE) bit can be set, and
write operations to change firmware on SPI flash will work.

Why allow firmware to change at runtime? While it often makes sense to
think about firmware as a small bit of code that configures the hardware

https://www.kb.cert.org/vuls/id/766164
https://twitter.com/c7zero/status/846541211431141376
https://github.com/CylanceVulnResearch/disclosures/blob/master/CLVA-2017-01-002.md
https://github.com/CylanceVulnResearch/disclosures/blob/master/CLVA-2017-01-002.md
https://firmwaresecurity.com/2017/08/03/hardened-linux-coreboot-and-chipsec/
https://github.com/comaeio/OPCDE/tree/master/2018/Emirates/UEFI%20BIOS%20firmware%20analysis%20at%20scale%20-%20Oleksandr%20Bazhaniuk
https://github.com/comaeio/OPCDE/tree/master/2018/Emirates/UEFI%20BIOS%20firmware%20analysis%20at%20scale%20-%20Oleksandr%20Bazhaniuk
https://nvd.nist.gov/vuln/detail/CVE-2018-4251
https://www.theregister.co.uk/2019/04/03/razer_laptop_flaw/
https://www.welivesecurity.com/2018/09/27/lojax-first-uefi-rootkit-found-wild-courtesy-sednit-group/
https://www.welivesecurity.com/2018/09/27/lojax-first-uefi-rootkit-found-wild-courtesy-sednit-group/
http://https://uefi.org/specifications
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/100-series-chipset-datasheet-vol-2.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/100-series-chipset-datasheet-vol-2.pdf
https://twitter.com/c7zero/status/846541211431141376
https://twitter.com/c7zero/status/846541211431141376

/7N

G\C|YPS|UFT1 OF THE ENTERPRISE

and then transfers control away, this is not really how most systems
work. Features such as modifying persistent data (storing firmware
configuration or UEF! variables, for example) require the ability to write
to SPI flash. Similarly, features that allow runtime update of firmware
also require such access. If the hardware allows either of these things to
happen at runtime, there must be some way to enable it.

To implement modification of SPI, software needs to enable writes
(using BIOSWE), which generates a System Management Interrupt
(SMI) to process the access control decision. If not authorized, the
SMM code disables writes again and returns control to the normal
runtime environment.

Did you spot the Race Condition? There is a time between enabling and
disabling writes during which SPI commands can be independently
processing write opcodes. Attackers can attempt write operations
repeatedly in one thread while enabling flash writes (BIOSWE) in another.
Many operations may be blocked, but eventually one will get through,
and the process can be repeated until all writes are complete. This is
known as the "Speed Racer” vulnerability (), and it was
described well by Corey Kallenberg and Rafal Wojtczuk in their

back in 2015. Last year the vulnerability was exploited in the
wild by

To address this, we can require that the system actually be in SMM in
order to allow SPI flash writes. This functionality is enabled by another

bit in the BIOS Control Register called SMM BIOS Write Protection
(SMM_BWR or EISS in newer chipsets). When set, writes can only be
allowed by code executing in SMM. This prevents the “Speed Racer” attack
by bringing all threads into SMM, where trusted code can enable writes.
When systems fail to set this configuration, as in ,they are
vulnerable to the race condition attack.

These protections only control writes to the region of SPI flash
containing system firmware for the host processor (known as the BIOS
Region). To protect other regions (or as defense in depth for system
firmware), it is also possible to program Protected Range Registers
(PRO-PR4) in the SPI controller. Each of these registers defines a range
of addresses and read/write access control permissions for the range.
After setting these registers to control up to 5 regions, the configuration
should be locked using the FLOCKDN bit so that it cannot be modified
by software until a reboot. Of course, many systems fail to do this, as
detailed by other researchers.

Chromebooks use a different mechanism to control writes to regions of
the SPI flash. These systems use Coreboot instead of UEFI firmware.
Coreboot is structured to separate a ROM stage from a RAM stage, and
the earliest portion of firmware is protected with a physical screw that
connects the write protect pin on the flash chip. That means changes to
this early (trusted) firmware require physical access. While this limits what

DEFENDING THE FOUNDATION

is available for software updates, it also puts a major barrier in place for
malware to bypass protection of the root of trust for the system.

DETECTION

You can check these issues in a test lab using the open source
framework for platform security assessment. Specifically, these issues
correspond to the bios_wp and spi_lock modules.

[*] running module: chipsec.modules.common.bios wp

[*] BC = 6x 288 < ntrol (b:d.f 00:31.5 + 6xDC)
[60] BIOSWE << BIOS Write Enable

[61] BLE BIOS Lock Enable

[62] SRC SPI Read Configuration
[04] TSS Top Swap Status

[05] SMM BWP SMM BIOS Write Protection
[66] BBS Boot BIOS Strap

[67] BILD = BIOS Interface Lock Down

[*] BIOS Regio

0x00346000, Limit = 0x007FFFFF
[SPI Protected

(84) | 83EF03BO | 00380000 | OO3EFFFF |
| 862FO3F0 | 6O3FO000 | BO62FFFF |
| 866F0630 | 00630000 | BOGGFFFF |
| 87EFO6FO | 006FEO0O | BOTEFFFF

(94) | 87FFO7FO | 0O7F0000 | @OTFFFFF |

1 FDBC - Byte Count
[E ST = PI SMI# Enable

[*] running module: chipsec.modules.common.spi lock

[*] HSFS = 6x Sequencing Flash Status Register (SPIBAR + x4
[00] FDONE Flash Cycle Dope
[01] FCERR Flash Cycle Error
[62] AEL or Log
SCIP in progress
[11] WRSDIS Wr. tatus disable
[12] PR34LKD PRR3 PRR4 Lock-Down
[13] FDOPSS Flash Descriptor Override Pin-Strap Status
[14] FOV sh Descriptor Valid
[15] FLOCKDN iguration Lock-Down
[16] FGO
[17] FCYCLE
[21] WET
[24] FDBC = h Data Byte Count
[31] FSMIE = h SPI SMI# Enable

[*] running module: chipsec.modules.common.smm

CHIPSEC results for firmware storage protections

Eclypsium takes this into production systems in the enterprise, allowing
you to vet systems when you first receive them—as well as continuously
during operations. Our platform scans
laptops, servers and network devices for missing firmware storage
protections—such as missing BIOS write protections that would enable
a privileged attacker to bypass security. We also provide visibility into
hardware misconfigurations, firmware that is out-of date or vulnerable to
threats, and will detect and alert you to hardware implants, backdoors
and rootkits.

https://www.kb.cert.org/vuls/id/766164
https://bromiumlabs.files.wordpress.com/2015/01/speed_racer_whitepaper.pdf
https://bromiumlabs.files.wordpress.com/2015/01/speed_racer_whitepaper.pdf
https://eclypsium.com/2018/10/01/uefi-attacks-in-the-wild/?__hstc=56659957.9d1c8416b9d219bf26074c3cbf7a73e9.1565042160089.1570052179130.1570114798471.40&__hssc=56659957.2.1570114798471&__hsfp=863061177
https://support.lenovo.com/us/en/solutions/LEN-20184
https://github.com/chipsec/chipsec
https://eclypsium.com/product/

| DEFENDING THE FOUNDATION
\G\CypSlum OF THE ENTERPRISE

Vulnerability Details ®

) DEVICES <
Missing BIOS Write Protections
A RISK
OFDEVICERISIK Summary Severity & CVE(s)
O VULNERABILITIES
O TRENDS Overview: BIOS fails to properly write-protect flash Severity: High
tegions,allowing a pivileged,loca atacker
s INTEGRITY " o write arbitrary code to the platform Severity Score: 82
- firmware. This could allow an attacker to
instal persitent firmware level rootkit on ovE(s) None assigned
1o the computer, or o erase the ystem
% ALERTS(7) firmware, causing a denal of service.
Component: UEFIand B10S
& ADMINISTRATION <
Description: Any software running with ocal
& SETTINGS " administratorprvieges has unrestrcted

access to read and wite the system's
firmware. An attacker can modify the

£ DEPLOYMENT < contents of the system fimware to nstalla
persistent footki/bootki, or o corrupt the
@ SUPPORT % fimware causing the computer to ease

functioning, The attack only requires local
administrator privileges, and can be
executed either by using an existing OS:
level exploit o gain local administrator
privilege, or via tricking the user into running
an executable (e.g. via an attachment in @
phishing emai).

Devices Affected: 1694 (1694 0 9805)

Recommendation & Information

Recommendation: Potential Firmware Update: Fixes are
available for certain platforms from certain
vendors. Check latest firmware in vendor
web-site and install the latest updates.

Additional Info: tchmysys.com/blog/2017

083 compulabrintensepc:

wp/
nist gov/vuln/detai
/CVE2017-8083

Manufacturers often release firmware updates to address issues like
these. When that happens, we help organizations identify which systems
are vulnerable and locate updates to protect enterprise devices. There
are many more aspects to defending the firmware and hardware attack
surface across the variety of enterprise systems in use today. We will
examine more in future posts.

