BAD'DRIVERS
e{t" 5 ¢
€ o, ~

GET OFF THE KERNEL
IF YOU CAN’T DRIVE

WHO ARE WE

Jesse Mickey
Michael Shkatov
@JesseMichael @HackingThings
ec‘ypswm
AN

P4

AGENDA

Beginning

Conclusions
Q&A

PRIOR WORK

* https://www.secureauth.com/labs/advisories/asus-drivers-elevation-privilege-vulnerabilities
* https://www.secureauth.com/labs/advisories/gigabyte-drivers-elevation-privilege-vulnerabilities
* https://www.secureauth.com/labs/advisories/asrock-drivers-elevation-privilege-vulnerabilities
@ReWolf
* https://github.com/rwfpl/rewolf-msi-exploit + Blog post link in Readme
@NOPANdRoll (Ryan Warns) / Timothy Harrison
* https://downloads.immunityinc.com/infiltrate2019-slidepacks/ryan-warns-timothy-harrison-device-
driver-debauchery-msr-madness/MSR_Madness_v2.9 INFILTRATE.pptx
@SpecialHoang
* https://medium.com/@fsx30/weaponizing-vulnerable-driver-for-privilege-escalation-gigabyte-edition-
e73ee523598b
@FuzzySec
* https://www.fuzzysecurity.com/tutorials/expDev/23.html

REFERENCES
@matrosov

* https://medium.com/@matrosov/dangerous-update-tools-c246f7299459
Matt Graeber
* https://posts.specterops.io/threat-detection-using-windows-defender-application-control-device-guard-
in-audit-mode-602b48cdicll
Dave Weston
* https://github.com/dwizzzle/Presentations/blob/master/Bluehat%20Shanghai%?20-
%20Advancing%20Windows%20Security.pdf
Gal Diskin
* https://media.paloaltonetworks.com/lp/endpoint-security/blog/a-brief-analysis-of-microsoft-patchguard-
msr-protection.html
Cr4sh
* https://github.com/Cr4sh/fwexpl

BACKGROUND

» T i |
Y

.I' Application !‘“:,&'-M

e Use,- >Pace

gb Windows

5. 0S

Driver

Device

BACKGROUND
& Application

A:j Windows

‘. 0S

DeviceloControl(dey, ioctl, inbuf, insize, ...)

1S3N03Y

IOCTL handler in driver called with IRP struct
e contains args passed from userspace

1S3N03Y

Driver

JIDOVIN

Ny

=

e Windows drivers
* Signed ——
 WHAQL signed WHQL

Certified

* New EV signing cert (A Must for Win10 signing process)

P4

icrosoft Signatures for kernel mode drivers

New requirements
« During Windows 10 all kernel mode drivers need to be signed by Microsoft
« These signatures are only available by submitting to Sysdev
« Extended Validation (EV) certificates are required to create new submissions
« It's easy for the "bad guys” to sign kernel-mode code today; we're raising the bar
« EV certificates better validate your identity and are much harder to steal
- this means less malware on our end-user’s machines

http://video.ch9.ms/sessions/winhec/2015/files/DDF202%20-%20Introduction%20t0%20Windows%20Driver%20Signing,%20Publishing,%20Distribution%20and%20Servicing.pptx

icrosoft Signatures for kernel mode drivers

New requirements
« During Windows 10 all kernel mode drivers need to be signed by Microsoft
« These signatures are only available by submitting to Sysdev
« Extended Validation (EV) certificates are required to create new submissions
« It's easy for the "bad guys” to sign kernel-mode code today; we're raising the bar
« EV certificates better validate your identity and are much harder to steal
- this means less malware on our end-user’s machines

Only New drivers are affected

« Drivers which are signed prior to Windows 10 RTM will ignore this change
« Drivers for all previous releases of Windows will be unaffected

« User mode drivers are unaffected

http://video.ch9.ms/sessions/winhec/2015/files/DDF202%20-%20Introduction%20t0%20Windows%20Driver%20Signing,%20Publishing,%20Distribution%20and%20Servicing.pptx

DRIVER SIGNING
CERTIFICATE EXPIRED

 LOADS ITANYWAY

pA4

imgflip..

GETTING OUR OWN

Get started with the Hardware Developer Program

The Windows Hardware Developer Program allows you to certify your hardware for Windows and sign and publish
your drivers to Windows Update.

* You must have an Extended Validation (EV) code signing certificate. Please check whether your company
already has a code signing certificate. If your company already has a certificate, have the certificate available.
You will need the certificate to sign files. If your company does not have a certificate, you will need to buy one
as part of the registration process.

* You will need to sign in as a global administrator in your organization's Azure Active Directory. If you do not
know whether your organization has an Azure Active Directory, contact your IT department. If your organization

does not have an Azure Active Directory, you will be able to create one for free in the next step.

* You must have the authority to sign legal agreements on behalf of your organization.

GETTING OUR OWN

| DECLARE
2
it

KNOWN THREATS

RWEverything

LoJax

Slingshot

Game Cheats and Anti-Cheats (CapCom and others)
MSI+ASUS+GIGABYTE+ASROCK

FFFF2AB6185A006E, PID: 2D3

Stealing token...

Stolen token: FFFFBABG1BSABBGE
for MsiExploit.exe EPROCESS...
EPROCESS: MsiExploit.exe, token: FFFF8AB642E3B957, PID: CAAS
Reusing token...
Whoami: nt authority\system

Read & Write Everything

Utility to access almost all hardware interfaces via software
User-space app + signed RwDrv.sys driver

Driver acts as a privileged proxy to hardware interfaces
Allows arbitrary access to privileged resources not intended
to be available to user-space

LoJax

First UEFI malware found in the wild

mplant tool includes RwDrv.sys driver from RWEverything
L oads driver to gain direct access to SPI controller in PCH
Uses direct SPI controller access to rewrite UEFI firmware

Slingshot

APT campaign brought along its own malicious driver

Active from 2012 through at least 2018

Exploited other drivers with read/write MSR to bypass Driver
Signing Enforcement to install kernel rootkit

Motivations

* Privilege escalation from Userspace to Kernelspace

* Bypass/disable Windows security mechanisms

* Direct hardware access
* (Can potentially modify system and device firmware
e Still have lots of issues with unsigned firmware

Attack Scenario #1

Driver is already on system and loaded
* Access to driver is controlled by policy configured by
driver itself
* Many drivers allow access by non-admin

Attack Scenario #2

Driver is already on system and not loaded
* Need admin privileges to load driver
* Load driver via signed app with UAC from trusted vendor
 (Can also wait until admin process loads driver to avoid
needing admin privileges

Attack Scenario #3

Malware brings driver along with it
* Need admin privileges to load driver
* Load driver via signed app with UAC from trusted vendor
 Can bring older version of driver
 LolJax did this for in-the-wild campaign
 Modified UEFI firmware to install persistent rootkit

il g B9 =

Finding drivers

Signed drivers

Focused on drivers from firmware/hardware vendors
Size (< 100KB)

rdmsr/wrmsr, mov crN, in/out opcodes are big hints
Windows Driver Model vs Windows Driver Framework

Finding drivers

Windows Driver Model

RtlInitUnicodeString{&DestinationString, L"\\Device\\AsrDru181™);
RtlInitUnicodeString{&SymbolicLinkHame, L"\\DosDevices\\AsrDru181");
result = IoCreateDevice{v1, Bx4Bu, &DestinationString, @x22u, B8, @, &Gui);
if { result >= 8)

v3d = IoCreateSymboliclink{&SymboliclLinkMame, &DestinationString);

if (vl »= 8

{
vi->HajorFunction[IRP_MJ_CREATE] = (PDRIVER_DISPATCH)&sub_11888;
vi->MajorFunction[IRP_HJ CLOSE] = (PDRIVER DISPATCH)}&sub 110808;
vi->MajorFunction[IRP_HMJ DEUVICE COHTROL] = (PDRIVER DISPATCH)ioctl handler;
ul->DriverlUnload = {(PDRIVER UHLDAD)sub 11838;

Windows Driver Framework

result = WdfUersionBind{DriverDbject, &RegistryPath, &WdfUersion, &WdfDriverGlobals});

WdfUersion ; DATA XREF: sub_1480810806+4T0
; sub_146081808+17To ...
a

offset aKmdflibrary ; “EmdfLibrary"

1 ; WdfHajorUersion

9 ; WdfHinorVersion

1DB Bh ; WdfBuildHumber

18Ch ; NumWldfFunctions

offset WdfFunctions ; Pointer to array of Functions to be filled by UWDF Library

Finding drivers

loCreateDevice vs. WdmlibloCreateDeviceSecure

Security Descriptor Definition Language (SDDL)
 Used to specify security policy for driver

Example:
* D:P(A;;GA;;;SY)(A;;GA;;;BA)

DACL that allows:
* GENERIC_ALL to Local System
e GENERIC_ALL to Built-in Administrators

Finding drivers

* Spent 2 weeks looking for drivers
* We skimmed though hundreds of files

e At least 42 vulnerable signed x64 drivers
* Found others since "\ (/) /°

NOW WHAT

What can we do from user space with a bad driver?
 Kernel virtual memory access

* Physical memory access

* MMIO access

* MSR access

 Control Register access

* PCl device access

* SMBUS access

* And more...

Arbitrary Ring0 memcpy

inbuf = {inbuf memcpy struct =)aZ->*AssociatedIrp.SystemBuffer;

® Can be USEd to patCh az->IoStatus.Information = 0i64;
if { inbuf 3}
kernel code and data oot = inbu->dest:
size = inbuf-»size;
StFUCtU res sk = inbuf-*src;
thPrint{"DEStT%x,Src=%x,Size=%d", inbuf-*dest, inbuf->src, {unsigned int)size);
e Steal tokens, elevate I (CDuoRD)size)
privileges, etc bytes I8t = sizer oo
do
* PatchGuard can catch ¢
o . E%te_ual = {?E5t++}[5rc_d5t_delta];
some modifications, et e v
but not all lihile { bytes_left);

kS

result = Bi6h;

Arbitrary Physical Memory Write

e Can perform MMIO access
to PCle and other devices

 Another mechanism to
patch kernel code and data
structures
* Steal tokens, elevate
privileges, etc
e PatchGuard can catch
some modifications,
but not all
e Partial mitigation in
Win 10 1803

mapped addr = HMmMapIoSpace{{PHYSICAL ADDRESS)ioctl inbuf->phys_addr, ioctl inbuf-»size, 8);
copy_of_mapped_addr = mapped_addr;
if { mapped_addr)
{
src_ptr = {char =)ioctl inbuf->virt_addr;
bytes left = ioctl _inbuf->size;
dst_ptr = {char =)mapped_addr; /7 physical address remapped into wirtual address space
while { bytes left)

item size = ioctl inbuf->item_size; /f copy by dwords, words, or bytes
if { item size) // item_size = @ means copy byte-by-byte
{

item size sub 1 = item size - 1;

if { item size sub 1) // item_size = 1 means copy word-by-word

1

if { item size sub 1 == 1) // item_size = 2 means copy dword-by-duword
1

dword_wval = ={ DWORD =})}src_ptr;

src ptr += Lj

#{ DWORD =)dst_ptr = dword_val;

dst_ptr += U;

bytes _left —= 4;

Lookup Physical Address from Virtual Address

signed intéd fastcall ioctl get phys from vwirt({ int64 al, IRP =a2)

e Useful when dealing with IOCTLs that o s 11 v

_IRP =u3; ff rsi@Ed

provide Read/Write using physical —intou virt addr; /7 oo

__inté4 phys_addr; /7 raxz@i

unsigned int vé; // ebx@1
addresses signed _ intéh result; // rax@2

u? = aZ-»AssociatedIrp._SystemBuffer;
az-»IoStatus.Information = BiG4;
3 = az2;
virt_addr = =u2;
DbgPrint("Default UA=%x", =u2};
LODMORD{phys_addr) = MmGetPhysicalAddress{virt addr});
uli = phys_addr;
DbgPrint{"Physical Address=%x,dwlLins=%x", phys_addr, virt_addr};
if (vG)
{
DbgPrint("Physical Address=%x", vi);
*{_ DWORD =)uv2 = v6;
u3-»IoStatus.Information = 4i64;
result = BiGh;
H
else
{
Fesult = STATUS_THUALID _PARAMETER;

¥

return result;

Arbitrary MSR Read

if (ioctl num == B<9C4B26884)

Model Specific Registers {
.. " . " it = reader _wrapper{
* Originally used for "experimental” features not irp->AssociatedIrp.SystemBuffer,
. irsp->Parameters.DeviceloControl.InputBufferLength,
guaranteed to be present in future processors o paraneters bevteelotontrot . OutputBufferLength,
* Some MSRs have now been classified as architectural Lostatus_info_ptr);

goto LABEL_59;

and will be supported by all future processors :
 MSRs can be per-package, per-core, or per-thread
* Access to these registers are via rdmsr and wrmsr

OpCOdeS int6éd fastcall readmsr_wrapper{inbuf _ msyr_struct =inbuf, intéhs inbuf size, QU
y Only acceSSIble by Rlngo unsigned _ intéd msr_wvalue; // rax@

msi value = _ readmsr{inbuf->msr_addr);

zoutbuf = {{unsigned int&4)YHIDWORD(msr value) <{ 32} | {(unsigned int)msr value;
xguthbuf size = 8;

return BiG4;

Arbitrary MSR Write

if (ioctl num == Bx9C4HA2088)

Security-critical architectural MSRs

- STAR (0xC0000081) vIT = writemsr wrapper(
: : irp->fssociatedIrp.SystemBuffer,
e SYSCALL EIP address and Ring O and Ring 3 Segment base irsp-»Parameters.DeviceloControl.InputBufferLength,
irp->AssociatedIrp.SystemBuffer,
e LSTAR (OXCOOOOOSZ) irsp->Parameters.DeviceloControl.OutputBufferLength,

* The kernel's RIP for SYSCALL entry for 64 bit software qoto LHB%Ei;;E“S—i“F“—"t"“
e CSTAR (0xC0000083) y
* The kernel's RIP for SYSCALL entry in compatibility mode

int64 fastcall writemsr_wrapper{inbuf msr_struct =inbuf, inté4 inbuf size, void =outbuf,

unsigned int6d uS; FF rdz@1

: 2 Aeen A : vt = (unsigned _ inté4)inbuf->msr_value >> 32;
Entrypomts USEd In transition from ng3 to ngo __writemsr(inbuf->mnsr_addr, LODWORD(inbuf->msr_walue), HIDWORD{inbuf->msr_value});

®*iostatus_info_ptr = 8;
return BiG4;

Arbitrary Control Register Read

CRO contains key processor control bits:
* PE: Protected Mode Enable

* WP: Write Protect

 PG: Paging Enable

CR3 = Base of page table structures

CR4 contains additional security-relevant control bits:
 UMIP: User-Mode Instruction Prevention

 VMXE: Virtual Machine Extensions Enable

e SMEP: Supervisor Mode Execution Protection Enable
 SMAP: Supervisor Mode Access Protection Enable

if { ioctl_inbuf->which_cr)
{
switch { ioctl inbuf->which_cr }
1
case 2:
cr value = readcr2()};
break ;
case 3:
cr_wvalue = _ readcr3(};
break ;
case u:
cr_value = _ readcrid();
break ;
default:
if { ioctl _inbuf->which_cr *= 8)
{
az-»IoStatus.Information = BiGL;
az->Io5tatus.Status = STATUS_UWSUCCESSFUL;
goto LABEL 135;

H
cr value = _ readcr8();

H
¥
else
{

cr_walue = _ readcr8(};
¥
ioctl_inbuf->cr_wvalue = cr_value;

Arbitrary Control Register Write

CRO contains key processor control bits:
 PE: Protected Mode Enable

* WRP: Write Protect

 PG: Paging Enable

CR3 = Base of page table structures

CR4 contains additional security-relevant control bits:
UMIP: User-Mode Instruction Prevention

VMXE: Virtual Machine Extensions Enable

SMEP: Supervisor Mode Execution Protection Enable
SMAP: Supervisor Mode Access Protection Enable

if { ioctl inbuf->which_cr)
1
switch { ioctl inbuf->which_cr)
{
case 3:
__writecr3{ioctl inbuf-»cr_value);
break;
case 4:
__writecrd(ioctl inbuf-»cr_wvalue);
break;
case 8:

__writecr8{ioctl inbuf-*cr_value); |
break;

default:
aZ2-:IoStatus.5tatus = STATUS _UNSUCCESSFUL;
break;

¥
¥

else

{
__writecr@{ioctl inbuf->cr_value);

b

Arbitrary IO Port Write

Impact is platform dependent

* (Can potentially be used to modify UEFI and

device firmware

e Servers may have ASPEED BMC with
Pantdown vulnerability which provides
read/write into BMC address space

* Laptops likely have embedded
controller (EC) reachable via IO port access

Can potentially be used to perform legacy PCI
access by accessing ports OxCF8/0xCFC

if { ioctl num == B=X9CHBABCE || ioctl num == Bx9CHBAABDE || ioctl num

{

ioctl inbuf = {inbuf out struct =)}irp->AssociatedIrp.SystemBuffer;

port num = ioctl inbuf->port_num;

if { ioctl num == BxPC4BABDE)

{
__outbyte{port num, ioctl inbuf->port_uvalue);
goto LABEL_65;

b

if { ioctl num == BxPC4BABDC)

{
__outword{port num, ioctl inbuf->port value);
goto LABEL_6%;

b

if { ioctl num == Bx9CHBABEA)

{
__outdword{port_num, ioctl_ inbuf->port_wvalue);
goto LABEL_65;

}

Arbitrary Legacy PCl Write

* Impact is platform dependent
* Can potentially be used to modify UEFI and device firmware

* |ssues with overlapping PCl device BAR over memory regions
* Overlapping PCI device over TPM region
e Memory hole attack

_disable();
__outdword(
BxCF8u,
(unsigned __ int8){ioctl inbuf->offset & OxFC)

+ {{ioctl_inbuf->func
+ 8
(ioctl _inbuf->deu + 32
(ioctl _inbuf->bus + {{{{{unsigned int)ioctl inbuf->offset >> 8) & BxF) + 128) < 8)))) << 8));
__outdword({{ioctl inbuf->offset & 3) + BxCFC, ioctl inbuf->write_value);

Kernel Code Execution via MSR

LSTAR MSR

User Memory Kernel Memory

Ring0 Entry Point

Kernel Code Execution via MSR

LSTAR MSR

User Memory Kernel Memory

Ring0 Payload

It's a little more complicated than that...

Supervisor Mode Execution Prevention (SMEP)

* Feature added to CPU to prevent kernel from executing code from user pages

e Attempting to execute code in user pages when in Ring0 causes page fault
* Controlled by bit in CR4 register

Need to read CR4, clear CR4.SMEP bit, write back to CR4
* This can be done via Read/Write CR4 IOCTL primitive or via ROP in payload

It's a little more complicated than that...

e Payload starts executing in Ring0, but hasn't switched to kernelspace yet
* Need to execute swapgs as first instruction
* Also need to execute swapgs before returning from kernel payload

* Kernel Page Table Isolation (KPTI)
* New protection to help mitigate Meltdown CPU vulnerability
e Separate page tables for userspace and kernelspace
* Need to find kernel page table base and write that to CR3
 We can use CR3 read IOCTL to leak Kernel CR3 value when building payload

IS THERE HOPE? @
* AV industry

* What good is an AV when you can bypass it, and how can
the AV help stop this lunacy.

* Microsoft
* Virtualization-based Security (VBS)
* Hypervisor-enforced Code Integrity (HVCI)
* Device Guard
e Black List

Automating Detection

* Manually searching drivers can be tedious

 Can we automate the process?

 Symbolic execution with angr framework
e Gotinitial script working in about a day
 Works really well in some cases
 Combinatorial state explosion in others

import angr
import claripy

irp addr = 0x3000000
ioctl inbuf addr = 0x4000000

inctl_handle:_addr 0x110d8
rmsr_addr = 0Oxlldac

angr.Project ("WinRing0x64.sys", auto load libs=False)
state = p-factnry-call_state{addr=inctl_handle:_addr}

Automating Detection

 Testing out the idea...
 Create symbolic regions for parts of IRP
e Store those into symbolic memory
 And set appropriate pointers in execution state

irp buf = claripy.BVs('irp"', 8*0xd0).reversed
state.memory.store (irp addr, irp buf)

ioctl inbuf = claripy.BVS('ioctl inbuf', 1024).reversed

State.menary.Stare[ia:tL_inbuf_aEd:, ioctl inbuf)

state.regs.rdx = 1rp addr
state.mem[state.regs.rdx+0x18].uinté4 t = ioctl inbuf addr

Automating Detection

 Testing out the idea...
* Create simulation manager based on state
 Explore states trying to reach the address of WRMSR opcode
* If found, show where the WRMSR arguments came from

sm = p.factory.simulation manager (state)
sm.explore (find=wrmsr addr)

if sm. found:
f = sm.found[0]

print ("RIP: %x" % f.solver.eval(f.regs.rip))

print ("MSR RADDR: symbolic=%s, value=%s" % (f.regs.ecx.symbolic, f.regs.ecx))

print ("MSE High DWORD: symbolic=%s, wvalue=%s" % (f.regs.edx.symbolic, f.regs.edx))
print ("MSE Low DWORD: symbolic=%s, walue=%s" % (f.regs.eax.symbolic, f.regs.eax))

(angr) Jessefdemo:~5 time python3 wormhole.py

[... snipped many angr warnings ...]

EIP: 1ll4dac

MSR ADDR: symbolic=True, value=<BV32 iloctl inbuf 2 1024[31:0]>

MSR High DWORD: symbolic=True, value=<BV32 ioctl inbuf 2 1024[55:64]>
MSR Low DWORD: symbolic=True, value=<BV32 ioctl inbuf 2 1024[63:32]>

real Om4.450s
Om3.928s

SYsS Om0.523s

(angr) jessefdemo:~$

def mem write hook(state):
ioctl handler addr = state.solver.eval (state.inspect.mem write expr)

state = p.factory.entry state()
drv obj buf = claripy.BVS('driver object', 8*0x150).reversed
state.memory.store (drv_obj addr, drv obj buf)

state.regs.rcx = drv obj addr

state.inspect.b('mem write', mem write address=drv obj addrt+0xe0, when=angr.BP AFTER, action=mem write hook)

= p.factory.simulation manager (state)
sm.explore (n=500)

Automating Detection

Automatically find IOCTL number and other constraints

* |OCTL num is at known offset in IRP

 Constraint tracking is very useful
e (Can get spammed with overly complex constraints
* Angr can simplify constraints for you

[AsrDrv101.sys] Attempting to find path from 110a8 to WrCR at 11731
[AsrDrv10l.sys] Found path from 110a8 to 11731

RIP: 11731

TOCTL NUM: 222870 from <BV3Z2 irsp params ioctl num 337 32>

Found write to control register with arbitrary wvalue!

Write CR: target=cr4, symbolic=True, value=<BV&4 loctl inbuf 328 8192[127:64]>
Constraints:

Input Buffer: <Boocl ioctl inbuf 328 8192[31:0] != 0x0>
Input Buffer: <Bool ioctl inbuf 328 8192[31:0] != 0x3>
Input Buffer: <Bool (0xfffffffd + ioctl inbuf 328 81592[31:0]) == 0x1>

Automating Detection

* Problems...
 Angr uses VEX intermediate representation lifting
 Has apparently never been used to analyze privileged
code
 Decode error on rdmsr/wrmsr, read/write CR,
read/write DR opcodes
 Can implement missing opcodes with Gymrat spotter

Automating Detection

* Problems...
* Current code only supports WDM drivers
* Have some ideas how to find WDF ioctl handlers
 Hook WdfVersionBind to fill WdfFunctions|]
* Hook WdfFunctions[WdfloQueueCreate]
 Some drivers cause it to blow up and run out of memory

DISCLOSURES
| SEE BAD DRIVERS..

EVEN KNOW THEY'RE nnn nnmns'

SUPERMICR!

DISCLOSURES

\g
2 4
Dol

DISCLOSURES

 Sent disclosure Friday 5pm

 Response came back Saturday morning

* Fix ready to start deployment in 6 weeks
“Phoenix Technologies Ltd. has made available

to its customers an updated version of its
WinFlash driver, revoked prior certificates and

assigned new certificates.”

DISCLOSURES

soc@us-cert.gov
cert@cert.org

C (/ K

Ask Microsoft what'’s their policy regarding bad drivers
Not a security issue, open a regular ticket
This might be an issue, are you sure?
Meh, Not an issue
Are you REALLY, REALLY, sure?
Ok, let us check

Ok, We will do something about it

pA4

THANK YOU!

FINALLY WINS SOMETHING

DISCLOSURES

ISReck »

All the primitives in one driver N
* Physical and virtual memory read/write
 Read/Write MSR

e Read/Write CR

* Legacy Read/Write PCl via IN/OUT

* IN/OUT //

N ‘..'_’.:n-‘ A e { = = Ve 1
e r i 4
kW \ VRS TR R
[R et T e 11 — At — J
\ S v .
5 A e i — 4
B\ |t ; ~

DISCLOSURES

NO RESPONSE

ADVISORIES

Vendor Date Advisory
Phoenix Jun 21,2019 TBD
Intel July 9, 2019

Huawei July 10, 2019
cmanager-en

Insyde Aug 10,2019 TBD
REDACTED Aug 13,2019 TBD
REDACTED TBD TBD

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00268.html​
https://www.huawei.com/fr/psirt/security-advisories/huawei-sa-20190710-01-pcmanager-en

Statements

To: Eclypsium
From: Insyde Software o@psmm D E F C @ N

Date: Embargoed until 3pm PST August 10, 2019

DEF CON 27 Aug. 8-11, 2019 Las Vegas

At Insyde Software, we applaud Eclypsium for their efforts to identify vulnerable firmware in the supply chain of enterprise
servers and work with suppliers and industry partners to mitigate these issues.

In the specific case of the “wormhole” vulnerability, Insyde appreciates Eclypsium’s responsible reporting of this issue and
allowing us necessary time to prepare our resolutions and disclosure.

After receiving Eclypsium’s report, our engineers reviewed the issue and started a fresh study of our drivers and
applications that use the impacted drivers. We followed Microsoft's updated Windows driver guidelines to redesign our
applications and drivers. We also reduced the overall access requirements of our applications. New versions of our
application packages with these and other security enhancements were released to our customers starting last month.
We continue to work towards a full resolution for all platforms impacted.

Insyde Software takes the responsibility of the security of our firmware technology very seriously and encourages all
security researchers to responsibly report security issues directly to security.report@insyde.com

The Insyde Software Security Team

Ainsyde

Statements

Microsoft has a strong commitment to security and a demonstrated track record of
investigating and proactively updating impacted devices as soon as possible. For the best
protection, we recommend using Windows 10 and the Microsoft Edge browser.

In order to exploit vulnerable drivers, an attacker would need to have already
compromised the computer. To help mitigate this class of issues, Microsoft recommends
that customers use Windows Defender Application Control to block known vulnerable
software and drivers.

Customers can further protect themselves by turning on memory integrity for capable
devices in Windows Security.

Microsoft works diligently with industry partners to address to privately disclose
vulnerabilities and work together to help protect customers.

Conclusions

.,Q “nm.n ‘“h“'_ -

DRIVERS OUT THERE

 Bad drivers can be immensely dangerous
* Risk remains when old drivers can still be loaded by Windows

 Need to block/revoke old vulnerable drivers
 We want to kill off this entire bug class

Code release

 GitHub Repo Contents:
* Angr script to find wormhole drivers
* Example code in C#, C++ and PowerShell
* Latest slides
e Demo videos
e All our links to Drivers and tools

https://github.com/eclypsium/Screwed-Drivers

We will be taking questions outside

